Oligonucleotide Analogues with Integrated Bases and Backbone

Part 181)

Synthesis and Association of Thiomethylene-Linked UU and AA Dimers

by Anne Ritter, Bruno Bernet, and Andrea Vasella*

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang Pauli-Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

The thiomethylene-linked $U^*[s]U^{(*)}$ dimers 9-14 were synthesized by substitution of the 6-[(mesyloxy)methyl]uridine 6 by the thiolate derived from the uridine-5'-thioacetates 7 and 8 followed by O-deprotection. Similarly, the thiomethylene-linked $A^{*}[s]A^{(*)}$ dimers 9-14 were obtained from the 8-(bromomethyl)adenosine 15 and the adenosine-5'-thioacetates 16 and 17. The concentration dependence of both H-N(3) of the U*[s]U^(*) dimers 9-14 evidences the formation of linear and cyclic duplexes, and of linear higher associates, C(8 or 6)CH₂OH and/or C(5'/II)OH groups favouring the formation of cyclic duplexes. The concentration dependence of the chemical shift for both $H_2N-C(6)$ of the $A^*[s]A^{(*)}$ dimers 18-23 evidences the formation of mainly linear associates. The heteroassociation of $U^{*}[s]U^{(*)}$ to A*[s]A(*) dimers is stronger than the homoassociation of U*[s]U(*) dimers, as evidenced by diluting equimolar mixtures of 11/20 and 13/22. A 1:1 stoichiometry of the heteroassociation is evidenced by a Job's plot for 11/20, and by mole ratio plots for 9/18, 10/19, 12/21, 13/22, and 14/23.

Introduction. - In the context of the synthesis and pairing analysis of novel oligoribonucleotide analogues wherein the backbone of oligonucleotides is replaced by linking elements between nucleobases (ONIBs [2]), we have investigated the pairing of the self-complementary $U^{*}[s]A^{(*)}$ and $A^{*}[s]U^{(*)}$ dimers²) 1-5 (Fig. 1) [1]. The $U^{s}[A^{(*)}]$ alcohols 1 and 2 pair, *i.e.*, they form preferentially cyclic duplexes, whereas the fully protected analogues 3 only form linear duplexes and higher associates. In the $A^{s}[s]U^{(*)}$ series, only the alcohol 4 forms (mainly) cyclic duplexes, whereas 5 leads predominantly to linear duplexes and higher associates, irrespectively of whether HO-C(5'/II) is protected or not.

Pairing of the self-complementary thiomethylene-brigded U*[s]A^(*) and A*[s]U^(*) dimers is sequence-dependent and favoured by unprotected OH groups, viz., C(8)CH₂OH and/or C(5'/II)OH of U*[s]A^(*), and C(6)CH₂OH of A*[s]U* dimers.

For Part 17, see [1]. 1)

Conventions for abbreviated notation: The substitution at C(6) of pyrimidines and C(8) of purines is 2) denoted by an asterisk (*); for example U* and A* for hydroxymethylated uridine and adenosine derivatives, respectively. U(*) and A(*) represent both unsubstituted and hydroxymethylated nucleobases. The moiety linking C(6)-CH2 or C(8)-CH2 (of unit II) and C(5') (of unit I) is indicated in square brackets, i.e., [c] for a C-atom, [o] for an O-, and [s] for a S-atom. The index y, e, or a indicates a triple, double, or single bond, respectively.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. The self-complementary $U^*[s]A^{(*)}$ dimers 1 and 2, and the $A^*[s]U^{(*)}$ dimer 4 prefer the formation of cyclic duplexes, whereas the $U^*[s]A^{(*)}$ dimer 3 and the $A^*[s]U^{(*)}$ dimer 5 form mainly linear duplexes and higher associates. TDS = Thexyl(dimethyl)silyl (thexyl = 1,1,2-trimethylpropyl), MMTr = (monomethoxy)trityl = (4-methoxyphenyl)diphenylmethyl.

We wondered about the (hetero-)pairing of $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ dimers (the formation of cyclic duplexes) and the influence of unprotected OH substituents on pairing, and report the synthesis of $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ dimers, and the analysis of their association.

Results and Discussion. – 1. Synthesis of the $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ Dimers. These dimers were synthesized similarly as described for the $U^*[s]A^{(*)}$ and $A^*[s]U^{(*)}$ heterodimers [1]. Treatment of the thioacetates **7** [1] and **8** [1] with MeONa in MeOH generated the corresponding thiolates which reacted *in situ* with the protected C(6)-[(mesyloxy)methyl]uridine **6** [1] to form the $U^*[s]U^{(*)}$ dimers **9** and **11** in 79 and 73% yield, respectively (*Scheme*). The analogous treatment with MeONa in MeOH of the $A^*[s]A^{(*)}$ thioacetates **16** [1] and **17** [1] led to deacylation of both the thioacetyl and benzamido groups. The deacylation products reacted with the bromo derivatives **15** [1] to yield 79 and 84%, respectively, of the N⁶-deprotected A*[s]A^(*) dimers **18** and **20**. The dimers **11** and **20** were detritylated by exposure to Cl₂CHCOOH and Et₃SiH in CH₂Cl₂ [3] to provide 68% of the alcohols **13** and **22**, respectively. Desilylation of the $U^*[s]U^{(*)}$ dimers **9**, **11**, and **13**, and of the A*[s]A^(*) dimers **18**, **20**, and **22** with (HF)₃. Et₃N in THF [4] gave 58–87% of the isopropylidene protected mono- and dihydroxy compounds **10**, **12**, and **14**, and **19**, **21**, and **23**, respectively.

The formation of thioethers is evidenced by the typical upfield shift for C(5'/I) and CH₂-C(6/II) of **9**-**14** (*Table 4* in the *Exper. Part*) and **18**-**23** (*Table 6* in the *Exper. Part*). A lower degree of flexibility for the CH₂SCH₂ unit of the U*[s]U^(*) dimers is suggested by larger $\Delta\delta$ values for the geminal C(5'/I)H₂ and CH₂-C(6 or 8/II) of the U*[s]U^(*) dimers **9**-**14** than for the A*[s]A^(*) dimers **18**-**23** (0.06-0.51 vs. \leq 0.07 and 0.08-0.44 vs. < 0.06 ppm; *Tables 3* and 5 in the *Exper. Part*).

2. Homoassociation of the $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ Dimers. The homoassociation of the $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ dimers was investigated by ¹H-NMR spectroscopy. We first analysed the association on the basis of the concentration dependence of the

a) MeONa, MeOH; 79% of **9**; 73% of **11**; 79% of **18**; 84% of **20**. *b*) (HF)₃·Et₃N, THF; 87% of **10**; 77% of **12**; 58% of **14**; 80% of **19**; 75% of **21**; 66% of **23**. *c*) Cl₂CHCO₂H, Et₃SiH, CH₂Cl₂; 68% of **13**; 68% of **22**. TDS = Thexyl(dimethyl)silyl (thexyl = 1,1,2-trimethylpropyl), MMTr = (monomethoxy)-trityl = (4-methoxyphenyl)diphenylmethyl.

chemical shift for H-N(3) of the U*[s]U^(*) and for $H_2N-C(6)$ of the A*[s]A^(*) dimers ('shift concentration curves' (SCCs); compare [1]), and then determined the conformation of the dimers, particularly the orientation of the nucleobase and of the

Fig. 2. a) Homoassociation of 1-protected uracils (R¹, R² ≠ H). The superscripts in U^x · U^x indicate the C=O group involved in base pairing. b) Antiparallel and parallel base pairing of cyclic duplexes derived from UU dimers (illustrated for U⁴ · U⁴ base pairing). c) The three diastereoisomeric cyclic duplexes obtained from a given base-pairing mode (illustrated for U⁴ · U⁴ base pairing).

 CH_2SCH_2 unit, at a concentration of 20-30 mM in $CHCl_3$, *i.e.*, at a concentration where substantial association is observed.

2.1. Homoassociation of $U^*[s]U^{(*)}$ Dimers. Ab initio and semiempirical calculations suggest that N(1)-protected uracils pair in the gas phase, with C(4)=O and C(2)=O possessing similar H-accepting properties [5]. Hence, one expects the formation of a *ca*. 1:1:1:1 mixture of $U^4 \cdot U^4$, $U^2 \cdot U^2$, $U^4 \cdot U^2$, and $U^2 \cdot U^4$ duplexes (*Fig. 2,a*; the superscripts indicate the position of the H-accepting C=O group)³). If, in the duplexes shown in *Fig. 2, a*, $R^1 = R^2$, then $U^4 \cdot U^2$ and $U^2 \cdot U^4$ are identical, and a 1:1:2 mixture is expected, and a 1:1:1.6 mixture of $U^4 \cdot U^4$, $U^2 \cdot U^2$, and $U^4 \cdot U^2/U^2 \cdot U^4$ was indeed observed for a cold (123 K) solution of a uridine monomer in freon [6][7].

 $U^{*}[s]U^{(*)}$ Dimers may form a number of cyclic duplexes. The dimers may associate in an antiparallel fashion, as in **A**, or in a parallel one, as in **B** (*Fig. 2,b*). Any

³) $U^4 \cdot U^4$ and $U^2 \cdot U^2$ show the same relation of H-bonding as *Watson – Crick* and reverse *Watson – Crick* base pairing.

combination of $U^4 \cdot U^4$, $U^2 \cdot U^2$, $U^4 \cdot U^2$, and $U^2 \cdot U^4$ pairing of the two base units of the $U^*[s]U^{(*)}$ monoplex must be taken into consideration. A given pairing mode allows the formation of four diastereoisomeric duplexes, best specified by the relative orientation of the ribosyl moieties of units II that are not an inherent part of the duplex, as illustrated in *Fig. 2, c*, for the duplex **A** possessing two $U^4 \cdot U^4$ base pairs. Two diastereoisomers possess ribosyl units on the same side of the base pairs (**A1** and **A2** in *Fig. 2, c*) and two on opposite sides (**A3**), meaning that two C_2 -symmetric diastereoisomers (*i.e.*, **A1** and **A2**) and one C_1 -symmetric diastereoisomer (*i.e.*, **A3**) of duplex **A** are feasible.

Some of the cyclic duplexes derived from $U^*[s]U^{(*)}$ dimers may be disfavoured by steric interactions, *e.g.*, by an unfavourable orientation of the nucleobases, as it was observed in the $U^*[s]A^{(*)}$ and $A^*[s]U^{(*)}$ series [1], but the NMR spectra of $U^*[s]U^{(*)}$ dimers in CDCl₃ should in any case reflect the equilibria between the monoplex, cyclic duplexes, and linear associates.

The U*[s]U^(*) dimers **9**–**14** show different signals for H–N(3/I) and H–N(3/I). Unfortunately, broad NH signals in the HMBC spectrum of **14** prevent the observation of cross peaks between NH and C-atoms, and thus an unambiguous assignment of the NH signals. Deprotection of the silyloxy group at C(5'/II) of **11** to generate **12** went along with weak downfield shifts (≤ 0.10 ppm for a *ca.* 20-mM solution) for both H–N(3), whereas deprotection of the MMTrOCH₂ group at C(2/I) of **11** was correlated with a strong downfield shift (*ca.* 1 ppm) for the more highly shielded H–N(3). Therefore, the more highly shielded NH signal of **11** and **12**, and the more highly deshielded one of **13** and **14** was tentatively assigned to H–N(3/I) (*Table 1*). H–N(3) of the *C(6/I)*-unsubstituted dimers **9** and **10** possess a similar chemical shift as the C(6/I)-substituted **11**, with the exception of H–N(3/I) of **9** resonating *ca.* 0.8 ppm downfield.

Table 1. Chemical Shifts [ppm] of H-N(3) of the $U^*[s]U^{(*)}$ Dimers **9–14**, and of $H_2N-N(6)$ of the $A^*[s]A^{(*)}$ Dimers **18–23** for 20–24-mM Solutions in $CDCl_3$

	9	10	11	12	13	14
H–N(3/I) H–N(3/II)	10.78 10.48	10.02 10.48	9.96 10.56	10.02 10.66	10.97 10.76	11.08 10.77
	18	19	20	21	22	23 ^a)
$H_2N-N(6/I)$ $H_2N-N(6/II)$	5.96 5.80	6.08 6.30	5.62 5.71	5.82 6.05	6.64 6.16	6.33 6.70

^a) Assignments based on HMBC cross-peaks between $H_2N-C(6/I)$ and C(5/I), between C(5/I) and H-C(2/I), between H-C(2/I) and C(4/I), and between C(4/I) and H-C(1/I).

The concentration dependence of the chemical shift for both H-N(3) of 9-14 was determined for CDCl₃ solutions in the concentration range of 1 to 40-60 mM. The SCCs for 9-12 (*Fig. 3,a*) show the shape typical for an equilibrium between monoplex, linear and cyclic duplexes, and higher associates; *i.e.*, a low value for the chemical shift for H-N(3) at the lowest concentration where it can be measured, a weak bending of the SCC at concentrations below 20 mM, and a weak, continuous increase at higher concentrations. The SCCs of the uridine-6-methanol 13 are characterized by a strong

bending, typical for the formation of cyclic duplexes, but, instead of flattening out and forming a plateau, the chemical-shift values decrease slightly with increasing concentration (>19 mM; *Fig. 3,b*). This decrease is more pronounced for the SCCs of the corresponding diol **14** (decrease at a concentration >5 mM). The SCCs are moreover characterized by large shift values at the lowest concentration. We assume that the decrease is due to a shielding of the H–N(3) signals by stacking, as weakening of the H-bonds of the cyclic duplexes with increasing concentration is not easily envisaged. Stacking suggests that the cyclic duplexes (particularly of **14**) associate to higher aggregates. That the SCCs of **14** appear to again flatten out as the concentration is further increased above *ca.* 20 mM suggests a finite aggregation of the cyclic duplexes, probably due to intermolecular H-bonding of HOCH₂–C(6/I) (**13**), and of HOCH₂–C(6/I) and/or HO–C(5'/II) (**14**). At low concentrations, the mono-alcohol **13** exists mostly as the monoplex, and the diol **13** mostly in the form of one or several cyclic duplexes.

The SCCs in Fig. 3 were analysed numerically by the method proposed by Gutowsky and Saika [8], including a value of 7.70 ppm for a 0.0001-mM solution $[1][9]^4$ (*Table 2*). For **13** and **14**, only the increasing δ values (up to maximum concentration of 19 and 5.2 mM, resp.) were used for the calculation. The ratio K_{ass} $(H-N(3/II))/K_{ass}(H-N(3/I))$ should be 1 for a cyclic duplex. It increases from 0.75 of 9 via 0.86 of 13 and 0.92 of 14 to 1.71 of 10 and 12, and to 2.26 of 11. In agreement with the above qualitative analysis, 13 and 14 show the strongest preference for the formation of cyclic duplexes. Values deviating from 1 evidence a higher proportion of linear associates, either involving a preferred association via U(II)*, as for 10-12, or via $U(I)^{(*)}$, as for 9. This is rationalized by the fact that 20% of 9 prefer an *anti*orientation for unit I (see below), preventing the formation of cyclic duplexes, that base pairing for unit II in 10 and 12 is enhanced by co-operative H-bonding of HO-C(5'/II)and base pairing, and that the pairing properties for unit I of 11 and 12 are reduced due to the bulky MMTr group. As a consequence of the presence of higher associates, the calculated $K_{\rm ass}$ values are inaccurate, especially for **11**. Nevertheless, there is clear evidence for a correlation of base pairing and H-bonding of the OH groups, as seen by $K_{\rm ass}$ values increasing from 218–492 M⁻¹ for the fully protected **9** and **11**, to 673–1405 M^{-1} for the monoalcohols 10, 12, and 13, and to *ca*. 60000 for the diol 14.

The ¹H-NMR spectra of 20–30-mM solutions of U*[s]U^(*) dimers **9**–**14** in CDCl₃ (*Table 3* in the *Exper. Part*) suggest an equilibrium, mainly between linear and cyclic duplexes. The *syn*-conformation of unit II of the U*[s]U^(*) dimers **9**–**14** is evidenced by the downfield shift of H–C(2'/II) resonating at 5.13-5.27 ppm. Similarly, the downfield shift of H–C(2'/I) (5.15-5.16 ppm) evidences the *syn*-conformation of unit I of the *C*(*6/I*)-substituted **11**, **12**, and **14**, whereas a slight upfield shift of 0.05–0.1 ppm for H–C(2'/I) of the *C*(*6/I*)-unsubstituted **9** and **10**, and of the *C*(*6/I*)-hydroxymethy-lated **13** suggests a *ca.* 4:1 *syn/anti* equilibrium. The *anti*-conformation of **13** may be favoured by an intramolecular H-bond to S–C(5'/I), as it was postulated for the corresponding A*[s]U* analogue [1]. Both ribosyl moieties of **9–14** show a strong

⁴⁾ This value corresponds to the value of monomeric uridines [1][6]. It leads to a lower variance of the K_{ass} values by partially correcting the error due to H/H exchange with residual H₂O in CDCl₃ at low concentrations [1].

Fig. 3. SCCs for H-N(3/I) and H-N(3/II) of the U*[s]U^(*) dimers 9-14(1-60 mM) in CDCl₃ solution (including a value of 7.70 ppm for a 0.0001-mM soln.).

preference for the (*N*) conformation, as evidenced by J(1',2')/J(3',4') of <0.25. A *ca*. 4:1 *gt/tg* equilibrium for **9–14** is suggested by the observation that J(4',5'a/I) is distinctly larger than J(4',5'b/I) (8.7–9.6 *vs*. 1.0–4.8 Hz), assuming that the more highly deshielded H_a-C(5'/I) corresponds to H_{pro-R}, as it was established for dimers of the

Table 2. Numerical Analysis^a) of the SCCs of the $U^*[s]U^{(*)}$ Dimers **9–14** in Fig. 1: Calculated ¹H-NMR Chemical Shifts [ppm] of H-N(3) of the Monoplex (c = 0 mM) and of the Cyclic Duplexes ($c = \infty$), and Calculated Association Constants K_{ass} [M^{-1}].

	9	10	11	12	13 ^b)	14 ^b)
H-N(3/I)						
$\delta (c = 0 \text{ mm})$	7.69 ± 0.11	7.70 ± 0.02	7.70 ± 0.03	7.69 ± 0.06	7.69 ± 0.10	7.65 ± 0.09
$\delta(c=\infty)$	11.53 ± 0.09	10.46 ± 0.02	10.86 ± 0.03	10.48 ± 0.04	11.50 ± 0.09	11.37 ± 0.14
$\Delta\delta (c = \infty/30 \text{ mm})$	0.66	0.40	0.76	0.38	0.53	
K _{ass}	441 ± 78	673 ± 31	218 ± 11	773 ± 93	1405 ± 260	64500 ± 95000
H-N(3/II)						
$\delta (c = 0 \text{ mm})$	7.69 ± 0.12	7.70 ± 0.06	7.71 ± 0.08	7.69 ± 0.06	7.69 ± 0.13	7.66 ± 0.08
$\delta(c=\infty)$	11.29 ± 0.09	10.88 ± 0.05	11.28 ± 0.07	11.09 ± 0.03	11.34 ± 0.13	11.05 ± 0.14
$\Delta\delta (c = \infty/30 \text{ mm})$	0.71	0.37	0.60	0.37	0.59	
K _{ass}	329 ± 66	1150 ± 165	492 ± 63	1322 ± 127	1204 ± 306	59600 ± 88100

^a) Including a value of 7.7 ppm for a 0.0001M soln. ^b) Only the increasing δ values at low concentration (13: up to c = 19 mM, 14: up to c = 5.2 mM) are used for the numerical analysis. Due to only a few values and no value between 0.0001 and 1.7M, both K_{ass} values of 14 show a large variance although the curves fit well the experimental values.

 $A^{*}[s]U^{(*)}$ series [1]. According to this interpretation, the cyclic duplexes derived from the U*[s]U^(*) dimers **9**–**14** prefer a *gt* conformation of unit I, similar as it was found for the cyclic duplexes derived from the self-complementary U*[s]A^(*) dimers [1].

2.2. Homoassociation of the $A^*[s]A^{(*)}$ Dimers. Ab initio and semiempirical calculations suggest that 9-substituted adenines pair in the gas phase, and that N(1) and N(7) show similar H-accepting properties [10]. One expects the formation of a *ca*. 1:1:1:1 mixture of A¹ · A¹, A⁷ · A⁷, A¹ · A⁷, and A⁷ · A¹ duplexes (*Fig.* 4; superscripts indicate the position of the H-accepting N-atom)⁵). For R¹ = R², A¹ · A⁷ and A⁷ · A¹ are identical. Steric interactions of a substituent at C(8) probably disfavour A¹ · A⁷, A⁷ · A¹, and especially A⁷ · A⁷. As in the U*[s]U^(*) series, A*[s]A^(*) dimers may form a number of cyclic duplexes, and the four pairing modes, parallel *vs.* antiparallel pairing, and the fact that a given pairing mode may lead to three or four diastereoisomeric duplexes must be taken into consideration.

The A*[s]A^(*) dimers **18–23** show broad ¹H-NMR signals for H₂N–C(6/I) and H₂N–C(6/II) (*Table 1*). HMBC Cross-peaks allowed an unambiguous assignment of the NH₂ signals of **23**, H₂N–C(6/I) resonating at higher fields than H₂N–C(6/II). Protection of both OH groups of **23** led to a strong upfield shift (0.71 and 0.99 ppm for a *ca.* 20-mM solution) for both NH₂ signals. The relative shielding observed upon protecting HO–C(5'/II) and HOCH₂–C(8/I) was used to tentatively assign the NH₂ signals of **18–22**.

A priori, one expects two signals of an NH_2 group involved in base pairing, with the H-donating NH resonating downfield with respect to the free NH. None of the NH_2 groups of **18–23** shows signal splitting, and the broad NH_2 signals evidence rapidly equilibrating H-atoms, and, thus, a weak and reversible association.

⁵) $A^1 \cdot A^1$ and $A^7 \cdot A^7$ show the same relation of H-bonding as *Hoogsteen* and reverse-*Hoogsteen* base pairing.

Fig. 4. Homoassociation of 9-protected adenines $(\mathbb{R}^1, \mathbb{R}^2 \neq \mathbb{H})$. The superscripts in $\mathbb{A}^x \cdot \mathbb{A}^x$ indicate the H-accepting N-atom.

The concentration dependence of $\delta(NH_2)$ was measured for 1-60-mM solutions of **18**, **19**, and **21**–**23** in CDCl₃ (*Fig.* 5). The SCCs of **18**, **19**, and **21** show a nearly steady increase, evidencing equilibria of the monoplex with linear duplexes and higher associates. A slight flattening of the SCCs of **22** and **23** at concentrations above 20 mM hints at a minor participation also of cyclic duplexes. Since the broad NH₂ singlets evidence the equilibration of H-donating and free NH groups, a numerical analysis of the SCCs appears inappropriate.

The syn-conformation of unit II of the A*[s]A^(*) silyl ethers 18, 20, and 22 is evidenced by the downfield shift of H-C(2'/II), resonating at 5.89-5.91 ppm (Table 5 in the Exper. Part). An intramolecular H-bond from HO-C(5'/II) to N(3/II) of 18, 20, and 22 is evidenced by several characteristic parameters [1][2][11]; i.e., by the downfield shift of HO-C(5'/II) (6.1–6.6 ppm), the upfield shift of H-C(2'/II) (5.19– 5.24 ppm), small J(4',5'a/II), J(4',5'b/II), and J(5'a,OH/II) (<1.5 Hz), a large J(5'b,OH/II) (10.5–11.5 Hz), and a (S) conformation (J(1',2')/J(3',4') > 4.4). Similarly as in the U*[s]A* series [1], H-C(2'/I) of the C(8/I)-unsubstituted 18 and 19 resonates upfield at 5.46 and 5.45 ppm, and H-C(2'/I) of the C(8/I)-substituted 20-23 at 5.53-5.65 ppm. This evidences a ca. 2:3 syn/anti equilibrium of 18 and 19, and a ca. 2:1 syn/ anti equilibrium of 20-23. The syn-oriented adenine moiety of 18-23 and particularly the anti-oriented, C(8/I)-substituted adenine moiety of 20-23 disfavour the ggorientation of the thiomethyl group, an expectation that agrees with J(4',5'a/I) and J(4',5'b/I) of 5.5–7.5 Hz, suggesting a ca. 1:1 equilibrium of gt- and tg-conformers of 18-23. The ribosyl unit I of 18-23 and the ribosyl unit II of the silvl ethers 18, 20, and 22 prefer a (N) conformation, as evidenced by J(1',2')/J(3',4') of 0.4-0.65.

3. Heteroassociation of the $U^*[s]U^{(*)}$ and $A^*[s]A^{(*)}$ Dimers. In CDCl₃ and in CDClF₂/CDF₃ solution, 1-alkylated uracils and 9-alkylated adenines form U·A hetero-duplexes ($K_{ass} < 250 \text{ M}^{-1}$) rather than U·U and A·A homo-duplexes [10–15]. 4,13-Bis(aden-9-ylpropyl)- and 4,13-bis(thymid-1-ylpropyl)-4,13-diaza-18-crown-6 compounds associate in CDCl₃ with $K_{ass} = 855 \text{ M}^{-1}$ [16]. This suggests that hetero-association should also be preferred for U*[s]U^(*) and A*[s]A^(*) dimers in CDCl₃ solution.

The hetero-duplexation was investigated with the completely protected $U^*[s]U^*$ dimer **11** and $A^*[s]A^*$ dimer **20**. The SSCs for H-N(3/I) and H-N(3/II) of **11** were

Fig. 5. SCCs for $H_2N-C(6/I)$ and $H_2N-C(6/II)$ of the $A^*[s]A^{(*)}$ dimers **18**, **19**, and **21–23** (1–60 mM) in CDCl₃ solution

determined for CDCl₃ solutions of equimolar mixtures of **11** and **20**, and compared to the ones for solutions of **11** only (*Fig.* 6, *a*). The hetero-duplexation of the corresponding monoalcohols **13** and **22** was investigated in a similar way (*Fig.* 6, *b*). Hetero-pairing is clearly favoured over homo-pairing by these thiomethylene-linked U*[s]U* and A*[s]A* dimers, as evidenced by the strongly differing chemical shifts for H-N(3/I) and H-N(3/II) of **11** and **13** in the presence of **20** or **22**, respectively, at concentrations larger than 10 mM ($\Delta \delta \ge 1$ ppm). The chemical shifts of 11.7 to 12 ppm for H-N(3/I) and H-N(3/II) of the mixture **11/20** and **13/22** at concentrations of 30 mM suggest the formation of duplexes *via Hoogsteen* and *Watson - Crick* pairing⁶). The weaker bending of the SCCs for **11/20** at concentrations above 15 mM, as compared to the SCCs for **13/22**, evidences that the transformation of the linear to the cyclic duplex(es) is less favoured for the hetero-duplexes **11 · 20** than for **13 · 22**.

The slight upfield shift for H-N(3/I) and H-N(3/II) of **13** at higher concentrations that was rationalised by assuming association of the cyclic duplexes effects a downsizing of K_{ass} irrespective of weather it is obtained by numerical or graphical analysis, as the basic equations were not corrected by including higher associates. For this reason, the calculated K_{ass} values for the hetero-duplexation of **11** and **20** (289 ± 59 M^{-1} for H-N(3/I) and 455 ± 105 M^{-1} for H-N(3/II)) are too small as compared with K_{ass} for the homo-duplexation of **11** (218 ± 11 M^{-1} for H-N(3/I) and 492 ± 63 M^{-1} for H-N(3/II)). The K_{ass} values for the hetero-duplexation of **13** and **22** (1733 ± 174 M^{-1} for H-N(3/I) and 2025 ± 241 M^{-1} for H-N(3/II)) are more precise, being larger than

⁶⁾ Compare with 12.6-12.8 ppm for Watson-Crick base-paired U*[s]A^(*) cyclic duplexes and 11.0 ppm for a reverse Hoogsteen base-paired A*[s]U* cyclic duplex [1].

Fig. 6. SCCs for H-N(3/I) and H-N(3/II) of the $U^*[s]U^*$ dimers **11** and **13** (1-50 mM) in CDCl₃ solution in the presence or absence of equimolar amounts of the $A^*[s]A^*$ dimers **20** and **22**, respectively (the assignment of the H-N(3) signals in the presence of the $A^*[s]A^*$ dimers is tentative)

the K_{ass} values for the homo-duplexation of **13** (1450 ± 260 m⁻¹ for H–N(3/I) and 1204 ± 306 m⁻¹ for H–N(3/II)).

The 1:1 stoichiometry of the hetero-duplexation of **11** and **20** was determined by a *Job*'s plot that was derived by analysing the chemical shifts of H-N(3/I) and H-N(3/I) of **11** (*Fig.* 7 and *Exper. Part*) upon adding increasing amounts of **20**. For the calculation of the *Job*'s plot, the following δ values were used: 7.70 ppm for H-N(3/I) and H-N(3/I) of **11**, 12.81 ppm for H-N(3/I) of **11** · **20**, and 12.90 ppm for H-N(3/I) II) of **11** · **20**⁷). The determination of the *Job*'s plot is not trivial, as excess **11** in the 6:4

⁷) The latter two values correspond to the δ (HN) values at infinite concentration as obtained in the numerical analysis of the SCCs of **11/20** in *Fig. 6,a.*

Fig. 7. Job's plot revealing the 1:1 hetero-association of the U*[s]U* dimer 11 and the A*[s]A* dimer 20

to 9:1 **11/20** mixtures forms homo-duplexes, and $\delta = 7.70$ ppm for the monoplex **11** cannot be used in the calculation. The above mixtures were, therefore, considered as consisting of a 1:1 mixture of **11** and **20**, and excess **11** forming the homoduplex **11** · **11**, and $\delta = 7.70$ ppm was replaced by the $\delta(H-N(3/I))$ and $\delta(H-N(3/I))$ values for **11** (at the concentration resulting from the 6:4 to 9:1 ratio of **11** and **20**), as taken from the SSCs in *Fig. 3* (values given in the *Exper. Part*). The resulting *Job*'s plot confirms the 1:1 stoichiometry of the hetero-duplexation, although the correction of the $\delta(H-N)$ values for **11** is only an approximation, as indicated by the dissymmetry of the plot.

The determination of the stoichiometry of duplexation by the mole-ratio method does not require knowledge of the chemical shift values of the monoplexes and duplexes. We analyzed the chemical shift of both H-N(3) for solutions of the $U^*[s]U^{(*)}$ dimers maintaining the concentration of the $U^*[s]U^{(*)}$ dimer constant and varying the concentration of the $A^*[s]A^{(*)}$ dimer (*Fig. 8* and *Exper. Part*). The pairs 9/ 18 and 12/21 show different curves for H-N(3/I) and H-N(3/II), whereas the curves for H-N(3/I) and H-N(3/II), whereas the curves for H-N(3/I) and H-N(3/II) of 10/19 and 14/23 overlap partially, and those of 13/22 completely. A 1:1 association is evidenced by a crossing of the lines indicating the gradients a low and at high mole ratios at a mole ratio of 1. This condition is fulfilled more or less well for H-N(3/II) of 9/18 and 10/19, and for H-N(3/II) of 14/23. The stronger deviation for H-N(3/II) of 9/18, and for H-N(3) of both 12/21 and 13/22 may evidence larger amounts of higher linear associates.

The calculation of the K_{ass} values for the heteropairing of U*[s]U^(*) and A*[s]A^(*) dimers from mole-ratio experiments requires reliable data for the homopairing of the U*[s]U^(*) dimers. Since the data in *Table 2* show a large variance, further calculations appeared inappropriate. Nevertheless, K_{ass} for the U*[s]U^(*)/A*[s]A^(*) heteropairing appears to be *ca*. 1.5–2 times larger than K_{ass} for the U*[s]U^(*)/U*[s]U^(*) homopairing, as suggested by the dilution experiment for **13/22**.

1686

Fig. 8. Mole-ratio plots for the chemical shifts of H-N(3/I) and H-N(3/II) of the $U^*[s]U^{(*)}$ dimers 9, 10, and 12–14 involved in hetero-association to the corresponding $A^*[s]A^{(*)}$ dimers 18, 19, and 21–23, respectively

We thank Luca Castiglioni for the help in the synthesis, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

Experimental Part

General. See [1].

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-5'-thiouridine (9). A soln. of 6 [1] (328 mg, 0.8 mmol) and 7 [1] (205 mg, 0.8 mmol) in

O₂-free MeOH (2 ml) was treated with a soln. of MeONa (43 mg, 1 mmol) in O₂-free MeOH (2 ml), stirred for 14 h at r.t., and evaporated. A soln. of the residue in CH₂Cl₂ was washed with NH₄Cl soln. and brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane $3:2 \rightarrow 4:1$) gave **9** (484 mg, 79%). Colourless foam. R_f (MeOH/CH₂Cl₂ 5:95) 0.28. M.p. 128.3 – 130.6°. $[\alpha]_{D}^{25} = -11.5$ (c = 1.0, CHCl₃). IR (CHCl₃): 3387w, 3170w, 2961m, 2929m, 2868w, 1715s, 1696s, 1609w, 1455m, 1380m, 1271w, 1236m, 1157m, 1072s, 981w, 876m, 838m. ¹H-NMR (300 MHz, 50 mM, CDCl₃): see *Table 3*; additionally, 10.95, 10.70 (2 br. *s*, 2 NH); 1.58 (*sept.*, *J* = 6.9, Me₂CH); 1.52, 1.30 (2*s*, 2 Me₂CO₂); 0.83 (*d*, *J* = 6.9, *Me*₂CH); 0.81 (*s*, Me₂CSi); 0.08, 0.06 (2*s*, Me₂CH); 27.35, 27.09, 25.39, 25.31 (4*q*, 2 *Me*₂CO₂); 25.22 (*s*, Me₂CSi); 20.42 (*q*, *Me*₂CSi); 18.58 (*q*, *Me*₂CH); − 3.07 (*q*, Me₂Si). HR-MALDI-MS: 761.2866 ([*M* + Na]⁺, C₃₃H₅₀N₄NaO₁₁SSi⁺; calc. 761.2864). Anal. calc. for C₃₃H₅₀N₄O₁₁SSi (738.92): C 53.64, H 6.82, N 7.58; found: C 53.86, H 7.05, N 7.29.

2',3'-O-Isopropylidene-6-methyluridine- $(6^{i} \rightarrow 5'-S)$ -2',3'-O-isopropylidene-5'-thiouridine (10). In a polyethylene flask, a soln. of **9** (40 mg, 0.05 mmol) and (HF)₃ · Et₃N (80 µl) in THF (1 ml) [4] was stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (AcOEt/MeOH 100:0 \rightarrow 92:8) gave **10** (28 mg, 87%). Colourless foam. $R_{\rm f}$ (AcOEt/MeOH 9:1) 0.50. $[a]_{\rm D}^{25} = -46.2$ (c = 1.0, CHCl₃). IR (CHCl₃): 3478w (br.), 3387w, 3028w, 2994m, 2928m, 1697s, 1621w, 1454m, 1383m, 1266w, 1157w, 1086m, 1069m, 908w, 879m, 861m. ¹H-NMR (300 MHz, 50 mM, CDCl₃): see *Table 3*; additionally, 10.57, 10.15 (2 br. *s*, 2 NH); 1.54, 1.33 (2*s*, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table 4*; additionally, 114.32, 113.97 (2*s*, 2 Me₂C); 27.42, 27.14, 25.38, 25.27 (4*q*, 2 Me₂C). HR-MALDI-MS: 619.1689 ($[M + Na]^+$, C₂₅H₃₂N₄NaO₁₁S⁺; calc. 619.1686).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-{[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thiouridine (**11**). A soln. of **6** (592 mg, 0.918 mmol) and **8** [1] (490 mg, 0.918 mmol) in O₂-free MeOH (2 ml) was treated with a soln. of MeONa (194 mg, 3.6 mmol) in O₂-free MeOH (2 ml), stirred for 14 h at r.t., and evaporated. A soln. of the residue in CH₂Cl₂ was washed with sat. NH₄Cl soln. and brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane 3:2 \rightarrow 4:1) gave **11** (688 mg, 73%). Colourless foam. *R*_f (MeOH/CH₂Cl₂ 5:95) 0.43. [α]₂₅²⁵ = -36.9 (c = 1.0, CHCl₃). IR (CHCl₃): 3387w, 3171w (br.), 2961m, 2868w, 1697s (br.), 1609w, 1510w, 1448m, 1383m, 1302w, 1269w, 1157w, 1069m, 981w, 876w, 837m. ¹H-NMR (300 MHz, 65 mM, CDCl₃): see *Table* 3; additionally, 10.88, 10.34 (2 br. *s*, 2 NH); 7.48 – 7.25 (*m*, 12 arom. H); 6.85 (*d*, J = 8.7, 2 arom. H); 3.80 (s, Me₂CSi); 0.05, 0.04 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 4; additionally, 158.85, 143.09, 142.96, 133.96 (4s); 130.26 (2d); 128.10 (4d); 127.99 (4d); 127.32 (2d); 113.85 (s, 2 Me₂CO₂); 113.34 (2d); 88.31 (s, Ph₃C); 55.27 (q, MeO); 34.13 (d, Me₂CH); -3.19 (q, Me₂Si). HR-MALDI-MS: 1063.4155 ([M + Na]⁺, C₅₂H₆₈N₄NaO₁₃SSi⁺; calc. 1063.4171).

2',3'-O-Isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-[[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thiouridine (**12**). In a polyethylene flask, a soln. of **11** (100 mg, 0.096 mmol) in THF (1.5 ml) was treated with (HF)₃ · Et₃N (156 µl, 0.96 mmol), stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane 4 :1) gave **12** (60 mg, 77%). Colourless crystals. *R*_f (MeOH/CH₂Cl₂ 5 :95) 0.23. [a]₂₅^D = − 59.8 (c = 1.0, CHCl₃). M.p. 151.0 − 152.9°. IR (CHCl₃): 3386w (br.), 3182w, 3019w, 2929w, 1707s (br.), 1610w, 1510w, 1449m, 1384m, 1222m, 1157w, 1086m, 1035w, 875w, 837m, 790m, 728m. ¹H-NMR (300 MHz, 6 mM, CDCl₃): see *Table 3*; additionally, 10.75, 10.15 (2 br. *s*, 2 NH); 7.48 − 7.25 (*m*, 12 arom. H); 6.85 (*d*, *J* = 8.7, 2 arom. H); 3.80 (*s*, MeO); 1.53, 1.42, 1.33, 1.28 (4*s*, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table 4*; additionally, 159.22, 143.44, 143.31, 134.29 (4*s*); 130.59 (2*d*); 128.42 (4*d*); 128.34 (4*d*); 127.66 (2*d*); 114.15 (*s*, 2 Me₂C); 113.63 (2*d*); 88.45 (*s*, (4-MeOC₆H₄)Ph₂C); 55.47 (*q*, MeO); 27.48, 27.30, 25.65, 25.46 (2*q*, 2 *Me*₂C). HR-MALDI-MS: 921.2997 ([*M*+Na]⁺, C₄6H₅₀N₄NaO₁₃S⁺; calc. 921.2993). Anal. calc. for C₄₆H₅₀N₄O₁₃S (898.31): C 61.46, H 5.61, N 6.23; found: C 61.38, H 5.86, N 6.04.

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-(hydroxymethyl)-5'-thiouridine (13). A soln. of 11 (100 mg, 0.09 mmol) in CH₂Cl₂

	9 (50 mм)	10 (50 mм)	11 (65 mм)	12 (6 mм)	13 (40 mм)	14 (60 mм) ^а)
Uridine unit I						
H-C(5/I)	5.68	5.74	5.69 ^b)	5.665 ^b)	5.86 ^b)	5.93
H-C(6/I)	7.36	7.23	-	-	-	_
$CH_a - C(6/I)$	_	_	4.04	4.03	4.60 - 4.43	4.58
$CH_{\rm b} - C(6/I)$	_	_	3.97	3.97	4.60 - 4.43	4.48
$HOCH_2 - C(6/I)$	-	_	-	_	4.19°)	3.95 - 3.90
H-C(1'/I)	5.785	5.68	5.65	5.665	5.78 ^b)	5.675
H-C(2'/I)	5.06	5.11	5.15	5.16	5.08	5.15
H - C(3'/I)	4.74	4.84	4.87 - 4.80	4.84	4.76	4.85
H-C(4'/I)	4.34	4.31	4.18 - 4.09	4.21 - 4.12	4.375	4.33
$H_a - C(5'/I)$	3.12	3.04	2.97	3.01	3.23	3.14
$H_{\rm b} - C(5'/I)$	2.73	2.83	2.83	2.81	2.72	2.78
J(5,6/I)	8.1	8.1	-	_	_	_
$J(H_a,H_b/I)$	-	-	12.6	12.6	d)	13.8
J(1',2'/I)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
J(2',3'/I)	6.3	6.3	6.6	6.6	6.3	6.3
J(3',4'/I)	4.8	4.2	^d)	4.8	5.1	5.1
J(4',5'a/I)	9.0	8.7	8.7	9.0	9.6	9.6
J(4',5'b/I)	3.6	4.2	4.8	4.5	3.0	< 1.5
J(5'a,5'b/I)	14.4	14.4	14.4	14.4	14.4	14.1
Uridine unit II						
H-C(5/II)	5.37	5.42	5.665 ^b)	5.65 ^b)	5.81 ^b)	5.72
$CH_a - C(6/II)$	3.88	3.73	3.59	3.62	3.93	3.88 - 3.80
$CH_{b}-C(6/II)$	3.48	3.55	3.51	3.49	3.49	3.54
H-C(1'/II)	5.835	5.80	5.775	5.73	5.82 ^b)	5.84
H-C(2'/II)	5.16	5.23	5.27	5.25	5.15	5.135
H-C(3'/II)	4.83	4.95	4.87 - 4.80	4.97	4.865	4.91
H-C(4'/II)	4.09	4.19	4.18 - 4.09	4.21 - 4.12	4.12	4.20
$H_a - C(5'/II)$	3.78	3.88 - 3.76	3.77	3.82 - 3.72	3.90 - 3.78	3.88-3.80
$H_b - C(5'/II)$	3.78	3.88 - 3.76	3.72	3.82 - 3.72	3.90 - 3.78	3.88-3.80
HO-C(5'/II)	-	3.38-3.22	-	3.19-3.08	_	4.90 - 4.75
$J(H_a,H_b/II)$	15.9	15.3	15.0	15.0	15.6	15.0
J(1',2'/II)	< 1.0	< 1.0	1.5	1.8	< 1.0	< 1.0
J(2',3'/II)	6.3	6.3	6.3	6.6	6.3	6.3
J(3',4'/II)	3.9	4.8	^d)	4.2	4.2	4.8
J(4',5'a/II)	6.3	3.9	5.1	^d)	4.8	^d)
J(4',5'b/II)	6.3	3.9	7.2	d)	7.2	d)
J(5'a,5'b/II)	^d)	^d)	10.8	d)	^d)	d)

Table 3. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the U*[s]U^(*) Dimers 9-14 in CDCl₃

^a) Assignments based on DQFCOSY, HSQC, and HMBC spectra. ^b) Assignments may be interchanged. ^c) Broad t, J = 7.2 Hz. ^d) Not assigned.

(1 ml) was treated with Cl₂CHCOOH (100 µl, 1.21 mmol) and Et₃SiH (122 µl, 0.76 mmol) [3], stirred for 15 min at r.t., poured into sat. NaHCO₃ soln., and extracted with AcOEt. The combined org. layers were washed with brine, dried (MgSO₄), and evaporated. FC (AcOEt/cyclohexane 4:1 \rightarrow 1:0) gave **13** (50 mg, 68%). Colourless crystals. R_f (MeOH/CH₂Cl₂ 5:95) 0.28. $[\alpha]_D^{25} = -21.3$ (c = 1.0, CHCl₃). M.p. 125.4–126.7°. IR (CHCl₃): 3388w (br.), 3184w (br.), 3027w, 2961m, 2930m, 2869w, 1706s (br.), 1697s, 1621w, 1457m, 1383m, 1265w, 1158m, 1086m, 1069m, 875w, 837m. ¹H-NMR (300 MHz, 40 mm,

	9	10	11	12	13	14 ^a)
Uridine unit I						
C(2/I)	149.85	150.00	150.68	151.16	150.92	150.89
C(4/I)	164.52	164.04	163.67	163.98	164.46	164.52
C(5/I)	102.39	102.71	103.31	103.64	101.60	100.94
C(6/I)	144.44	143.77	151.95	152.18	155.37	155.76
$CH_2 - C(6/I)$	-	_	62.38	62.65	60.86	60.23
C(1'/I)	97.12	97.07	91.95 ^b)	92.38 ^b)	91.81 ^b)	91.31
C(2'/I)	84.37	84.26°)	84.30°)	84.41°)	84.85°)	84.62
C(3'/I)	84.37	83.94°)	84.61°)	84.88°)	85.07°)	84.80
C(4′/I)	90.79 ^b)	90.25 ^b)	89.97 ^b)	90.50 ^b)	91.81 ^b)	91.68
C(5'/I)	34.08	33.25	32.95	33.42	33.13	33.05
Uridine unit II						
C(2/II)	150.48	151.24	151.77	151.70	151.38	151.48
C(4/II)	163.53	162.53	163.25	162.99	163.95	163.38
C(5/II)	103.29	104.06	103.91	104.37	103.57	104.09
C(6/II)	151.83	151.66	151.95	152.18	152.47	152.21
$CH_2 - C(6/II)$	32.62	33.06	32.95	33.32	32.84	32.96
C(1'/II)	90.95 ^b)	91.49 ^b)	91.41 ^b)	91.85 ^b)	91.41 ^b)	91.41
C(2'/II)	84.37	84.02°)	84.11°)	84.07°)	84.67°)	84.34
C(3'/II)	81.79	80.51	82.20	80.76	82.10	80.43
C(4'/II)	89.72 ^b)	88.29	89.81 ^b)	88.58	90.29 ^b)	88.35
C(5'/II)	64.25	62.82	64.04	62.96	64.58	62.57
^a) Assignments ba	used on HSQC	and HMBC spe	ectra. ^b) ^c) Assi	gnments may b	e interchanged	

Table 4. Selected ¹³C-NMR Chemical Shifts [ppm] of the U*[s]U^(*) Dimers 9-14 in CDCl₃

CDCl₃): see *Table 3*; additionally, 10.75, 10.15 (2 br. *s*, 2 NH); 1.61 (*sept.*, J = 6.9, Me₂CH); 1.53, 1.31 (2*s*, 2 Me₂CO₂); 0.86 (*d*, J = 6.9, Me_2 CH); 0.84 (*s*, Me₂CSi); 0.125, 0.11 (2*s*, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table 4*; additionally, 114.11, 113.98 (2*s*, Me₂CO₂); 34.24 (*d*, Me₂CH); 27.55, 27.30, 25.60, 25.36 (4*q*, 2 Me_2 CO₂); 25.36 (*s*, Me₂CSi); 20.58, 20.53 (2*q*, Me_2 CSi); 18.73, 18.68 (2*q*, Me_2 CH); -2.97 (*q*, Me₂Si). HR-MALDI-MS: 791.2971 ([M + Na]⁺, C₃₄H₅₂N₄NaO₁₂SSi⁺; calc. 791.2969). Anal. calc. for C₃₄H₅₂N₄O₁₂SSi (768.31): C 53.11, H 6.82, N 7.29; found: C 53.22, H 6.80, N 7.09.

2',3'-O-Isopropylideneuridine-6-methyl-($6^1 \rightarrow 5'$ -S)-2',3'-O-isopropylidene-6-(hydroxymethyl)-5'-thiouridine (14). In a polyethylene flask, a soln. of 13 (105 mg, 0.136 mmol) in THF (1 ml) was treated with (HF)₃· Et₃N (220 µl, 1.36 mmol), stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (AcOEt/MeOH 100:0 \rightarrow 92:8) gave 14 (52 mg, 58%). Colourless foam. $R_{\rm f}$ (MeOH/CH₂Cl₂ 8:92) 0.42. $[a]_{\rm 25}^{\rm 25} = -35.1$ (c = 1.0, CHCl₃). IR (CHCl₃): 3387w (br.), 3182w, 3028w, 3013w, 2929m, 2857w, 1698s (br.), 1621w, 1457w, 1384m, 1268w, 1158m, 1099m, 1065m, 985w, 908w, 875w, 748m. ¹H-NMR (500 MHz, 60 mM, CDCl₃, assignments based on DQFCOSY, HSQC, and HMBC spectra): see *Table 3*; additionally, 10.84, 10.56 (2 br. s, 2 NH); 1.54, 1.32 (2s, Me₂C/II); 1.52 1.31 (2s, Me₂C/I). ¹³C-NMR (125 MHz, CDCl₃, assignments based on a HSQC and a HMBC spectrum): see *Table 4*; additionally, 114.27 (s, Me₂C/II); 113.99 (s, Me₂C/I); 27.35, 25.35 (2q, Me₂C/II); 27.09, 25.16 (2q, Me₂C/I). HR-MALDI-MS: 649.1794 ([M+Na]⁺, C₂₆H₃₄N₄NaO₁₂S⁺; calc. 649.1792).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl- $(8^{i} \rightarrow 5'-S)$ -2'3'-O-isopropylidene-5'-thioadenosine (**18**). Under N₂, a soln. of **15** [1] (297 g, 0.49 mmol) and **16** [1] (232 mg, 0.49 mmol) in O₂-free MeOH (1 ml) was treated dropwise with a soln. of MeONa (280 mg, 5.1 mmol) in O₂-free MeOH (1 ml), stirred for 12 h at r.t., and evaporated. A soln. of the residue in AcOEt was washed with NH₄Cl soln. and brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/

NH₄OH 100:0:0→90:10:1) gave **18** (307 mg, 79%). Yellowish powder. R_t (CH₂Cl₂/MeOH/NH₄OH 90:10:1) 0.50. $[a]_D^{25} = -55.2$ (c = 1.0, CHCl₃). M.p. 116.1–118.8°. IR (CHCl₃): 3413w, 2981w, 2961s, 2862m, 1632s, 1589m, 1472w, 1423w, 1375m, 1329w, 1294w, 1249m, 1087s, 869m. ¹H-NMR (300 MHz, 22 mM, CDCl₃): see *Table 5*; additionally, 5.99 (br. s, NH₂); 5.84 (br. s, NH₂); 1.53 (*sept.*, J = 6.9, Me₂CH); 1.60, 1.59, 1.40, 1.36 (4s, 2 Me₂CO₂); 0.81 (d, J = 6.9, Me_2 CH); 0.76, 0.75 (2s, Me₂CSi); -0.055, -0.07 (2s, Me₂Ci). ¹³C-NMR (75 MHz, CDCl₃): see *Table 6*; additionally, 114.31, 113.60 (2s, 2 Me₂CO₂); 34.07 (d, Me₂CH); -3.40 (q, Me₂Si). HR-MALDI-MS: 807.3412 (99, $[M + Na]^+$, C₃₅H₅₂N₁₀NaO₇SSi⁺; calc. 807.3408), 785.3585 (100, $[M + H]^+$, C₃₅H₅₃N₁₀O₇SSi⁺; calc. 785.3589). Anal. calc. for C₃₅H₅₂N₁₀O₇SSi (784.35): C 53.55, H 6.68, N 17.84; found.: C 53.48, H 6.81, N 17.82.

2',3'-O-Isopropylideneadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2'3'-O-isopropylidene-5'-thioadenosine (19). In a polyethylene flask, a soln. of 18 (40 mg, 0.05 mmol) in THF (1 ml) was treated with (HF)₃· Et₃N (80 µl), stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 100:0: $0 \rightarrow 100:10:1$) gave 19 (26 mg, 80%). Colourless foam. $R_{\rm f}$ (CH₂Cl₂/MeOH/NH₄OH 90:10:1) 0.30. [α]₂₅²⁵ = -65.0 (c = 1.0, CHCl₃). IR (CHCl₃): 3524w, 3483w, 3412m, 3331w (br.), 3260w, 3199w (br.), 2993m, 2943w, 1635s, 1589m, 1473w, 1455w, 1424w, 1375m, 1331w, 1297w, 1266m, 1155w, 1082s, 1010w, 909w, 863w. ¹H-NMR (300 MHz, 40 mM, CDCl₃): see *Table 5*; additionally, 6.46 (br. *s*, NH₂); 6.27 (br. *s*, NH₂); 1.63, 1.58, 1.365, 1.35 (4s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table 6*; additionally, 114.71, 114.15 (2s, 2 Me₂C); 27.99, 27.24, 25.60, 25.51 (4q, 2 Me₂C). HR-MALDI-MS: 665.2232 ([M + Na]⁺, C₂₇H₃₄N₁₀NaO₇S⁺; calc. 665.2230).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^{i} \rightarrow 5'$ -S)-2'3'-O-isopropylidene-8-{[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thioadenosine (20). A soln. of 15 (1 g, 1.3 mmol) and 17 [1] (779 mg, 1.3 mmol) in O₂-free MeOH (1 ml) was treated dropwise with a soln. of MeONa (280 mg, 5.1 mmol) in O2-free MeOH (1 ml), stirred for 12 h at r.t., and evaporated. A soln. of the residue in AcOEt was washed with NH_4Cl soln. and brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 95:5:1) gave 20 (1.18 g, 84%). Yellowish foam. R_f (CH₂Cl₂/MeOH/ NH₄OH 95:5:1) 0.26. $[a]_{D}^{25} = -47.2$ (c = 1.0, CHCl₃). IR (CHCl₃): 3412w, 2982s, 2865m, 1686s, 1634s, 1602m, 1585m, 1510m, 1448m, 1376m, 1300m, 1253s, 1081s, 866m. ¹H-NMR (300 MHz, 20 mM, CDCl₃): see Table 5; additionally, 7.54 - 7.48 (m, 4 arom. H); 7.42 - 7.22 (m, 8 arom. H); 6.85 (d, J = 8.7, 2 arom. H); 5.71 (br. s, NH₂); 5.62 (br. s, NH₂); 3.79 (s, MeO); 1.52 (sept., J = 6.9, Me₂CH); 1.59, 1.50, 1.39, 1.36 $(4s, 2 \text{ Me}_2\text{CO}_2); 0.80 (d, J = 6.9, Me_2\text{CH}); 0.75, 0.74 (2s, Me_2\text{CSi}); -0.07, -0.09 (2s, Me_2\text{Si}).$ ¹³C-NMR (75 MHz, CDCl₃): see Table 6; additionally, 158.67 (s); 143.33 (2s); 134.40 (s); 130.39 (2d); 128.34 (4d); 127.93 (4d); 127.13 (2d); 114.05, 113.55 (2s, 2 Me₂CO₂); 113.26 (2d); 87.89 (s, (4-MeOC₆H₄)Ph₂C); 55.26 (q, MeO); 34.10 (d, Me₂CH); 27.21 (2 C), 25.57, 25.48 (3q, 2 Me₂CO₂); 25.24 (s, Me₂CSi); 20.33 (q, Me_2 CSi); 18.52 (q, Me_2 CH); - 3.41 (q, Me_2Si). HR-MALDI-MS: 1109.4698 ($[M + Na]^+$, C₅₆H₇₀N₁₀NaO₉SSi⁺; calc. 1109.4715).

2',3'-O-Isopropylideneadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-2'3'-O-isopropylidene-8-{[(4-methoxyphenyl)diphenylmethoxy]methyl]-5'-thioadenosine (**21**). In a polyethylene flask, a soln. of **20** (100 mg, 0.07 mmol) and (HF)₃· Et₃N (150 µl, 0.93 mmol) in THF (2 ml) was stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 100:0:0 \rightarrow 92:9:1) gave **21** (65 mg, 75%). Colourless foam. $R_{\rm f}$ (CH₂Cl₂/MeOH/NH₄OH 95:5:1) 0.13. $[a]_{\rm D}^{25} = -46.7$ (c = 1.0, CHCl₃). IR (CHCl₃): 3523w, 3450w, 3411w, 3170w, 3020s, 2990m, 1687s, 1635s, 1602m, 1510m, 1448m, 1376m, 1331w, 1299m, 1224s, 1155m, 1081s, 866m, 789m, 728s. ¹H-NMR (300 MHz, 24 mM, CDCl₃): see *Table* 5; additionally, 752 – 748 (m, 4 arom. H); 7.41 – 7.24 (m, 8 arom. H); 6.85 (d, J = 8.7, 2 arom. H); 6.06 (br. s, NH₂); 5.85 (br. s, NH₂); 3.78 (s, MeO); 1.60, 1.49, 1.35, 1.34 (4s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 6; additionally, 158.74 (s); 143.24 (2s); 134.27 (s); 130.39 (2d); 128.32 (4d); 127.96 (4d); 127.21 (2d); 114.29, 113.96 (2s, 2 Me₂C); 113.33 (2d); 87.99 (s, (4-MeOC₆H₄)Ph₂C); 55.32 (q, MeO); 27.81, 27.21, 25.59, 25.50 (4q, 2 Me₂C). HR-MALDI-MS: 967.3542 ([M + Na]⁺, C₄₈H₅₂N₁₀NaO₉S⁺; calc. 967.3537).

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^l \rightarrow S$ -5')-8-(hydroxymethyl)-2'3'-O-isopropylidene-5'-thioadenosine (**22**). A soln. of **20** (300 mg, 0.27 mmol) in CH₂Cl₂ (3 ml) was treated with CH₂CHCOOH (300 µl, 3.6 mmol) and Et₃SiH (300 µl, 1.88 mmol),

	18 (22 mм)	19 (40 mм)	20 (20 mм)	21 (24 mм)	22 (15 mм)	23 (52 mм) ^а)
Adenosine unit I						
H - C(2/I)	8.32 ^b)	8.325 ^b)	8.29 ^b)	8.27 ^b)	8.26 ^b)	8.18
H - C(8/I)	8.08	7.99	-	-	-	-
$CH_a - C(8/I)$	_	_	4.43	4.41	5.01	4.94
$CH_{b}-C(8/I)$	_	_	4.43	4.41	5.01	4.91
$HOCH_2 - C(8/I)$	_	_	_	_	2.0 - 1.75	2.4 - 2.1
H - C(1'/I)	6.12	6.10	6.18°)	6.17	6.16	6.295
H - C(2'/I)	5.45	5.46	5.65	5.645	5.53	5.63
H - C(3'/I)	5.09	5.005	5.06	5.10	5.08	5.12
H - C(4'/I)	4.24	4.47	4.22	4.31	4.23	4.415
$H_a - C(5'/I)$	2.88	2.925	2.835	2.935	2.76	2.865
$H_{\rm b} - C(5'/I)$	2.88	2.925	2.835	2.865	2.76	2.83
$J(H_a,H_b/I)$	_	_	^d)	^d)	^d)	15.1
J(1',2'/I)	1.8	1.8	1.8	1.8	1.5	1.7
J(2',3'/I)	6.3	6.3	6.3	6.6	6.6	6.4
J(3',4'/I)	3.0	3.3	2.7	3.3	3.0	3.6
J(4',5'a/I)	6.6	6.6	6.9	7.5	6.6	7.2
J(4',5'b/I)	6.6	6.6	6.9	6.3	6.6	5.5
J(5'a,5'b/I)	^d)	^d)	^d)	14.1	^d)	14.2
Adenosine unit II						
H - C(2/II)	8.26 ^b)	8.24 ^b)	8.24 ^b)	8.21 ^b)	8.22 ^b)	8.155
$CH_a - C(8/II)$	3.92	3.90	3.875	3.84	4.08	3.89
$CH_{b} - C(8/II)$	3.92	3.825	3.82	3.74	3.81	3.793
H - C(1'/II)	6.20	5.99	6.20°)	5.94	6.39	5.98
H - C(2'/II)	5.89	5.24	5.89	5.195	5.91	5.23
H - C(3'/II)	5.00	5.08	5.08	5.04	5.04	5.05
H - C(4'/II)	4.46	4.50	4.30	4.45	4.445	4.49
$H_{a} - C(5'/II)$	3.615	3.945	3.59	3.90	3.57	3.93
$H_b - C(5'/II)$	3.505	3.80	3.475	3.73	3.475	3.778
HO - C(5'/II)	_	6.09	_	6.60	_	6.62 - 6.45
$J(H_a,H_b/II)$	^d)	15.0	15.0	15.0	14.7	15.0
J(1',2'/II)	1.8	5.1	1.8	5.1	1.5	4.9
J(2',3'/II)	6.3	6.3	6.3	6.0	6.3	5.8
J(3',4'/II)	3.3	< 1.0	3.3	0.9	3.9	1.1
J(4',5'a/II)	6.6	< 1.0	6.9	< 1.0	6.9	< 0.5
J(4',5'b/II)	6.3	< 1.0	6.3	< 1.0	6.3	< 0.5
J(5'a,5'b/II)	10.8	12.6	10.8	12.9	10.5	11.4
J(5'a,OH/II)	-	< 1.5	-	< 1.5	_	< 1.5
<i>J</i> (5′b,OH/II)	-	10.5	-	11.1	-	11.3

 Table 5. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the A*[s]A^(*) Dimers

 18-23 in CDCl₃

 $^{a})$ Assignments based on DQFCOSY, HSQC, and HMBC spectra. $^{b})$ $^{c})$ Assignments may be interchanged. $^{d})$ Not assigned.

stirred for 15 min, poured into sat. NaHCO₃ soln., and extracted with AcOEt. The combined org. layers were washed with brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 100:0:0 \rightarrow 90:10:1) gave **22** (150 mg, 68%). Colourless powder. $R_{\rm f}$ (CH₂Cl₂/MeOH/NH₄OH 90:10:1) 0.31. $[\alpha]_{\rm D}^{25} = -44.7$ (c = 1.0, CHCl₃). M.p. 128.1–129.3°. IR (CHCl₃): 3521w, 3480w, 3412w, 3327w (br.), 3180w

1692

	18	19	20	21	22	23 ^a)
Adenosine unit I						
C(2/I)	152.93	153.41	152.74	150.26 ^b)	152.88	152.90
C(4/I)	150.31	150.03	150.45	149.62°)	150.27	150.15
C(5/I)	120.03	120.34	118.84 ^b)	118.65 ^d)	117.97	118.01
C(6/I)	155.26 ^b)	155.79 ^b)	155.12°)	153.64°)	155.17 ^b)	155.27
C(8/I)	139.93	140.27	149.04	149.82	151.27	151.45
$CH_2 - C(8/I)$	-	-	59.34	59.15	57.42	57.41
C(1'/I)	89.91	90.85	89.92	89.88	89.34	89.55
C(2'/I)	83.76	83.99	83.87	84.00	83.81	83.63
C(3'/I)	84.10	84.42	84.19	84.00	84.17	84.15
C(4'/I)	87.81	87.69	87.82	87.99	88.34	88.55
C(5'/I)	33.36	34.01	33.36	33.72	32.96	33.43
Adenosine unit II						
C(2/II)	152.42	152.50	152.28	149.94 ^b)	152.44	152.26
C(4/II)	148.80	149.22	150.23	149.39°)	150.16	149.62
C(5/II)	118.40	119.17	118.45 ^b)	118.48 ^d)	117.97	118.48
C(6/II)	155.85 ^b)	155.98 ^b)	154.76°)	154.15 ^e)	154.98 ^b)	155.42
C(8/II)	148.58	148.34	148.89	148.95	149.00	148.41
$CH_2 - C(8/II)$	28.10	28.57	28.11	28.43	27.78	28.03
C(1'/II)	90.60	92.27	89.92	91.86	89.98	91.94
C(2'/II)	82.87	82.85	82.88	82.75	82.78	82.63
C(3'/II)	82.04	81.87	82.08	81.53	82.11	81.60
C(4'/II)	86.97	85.95	87.14	85.72	87.93	85.83
C(5'/II)	62.80	63.52	62.82	63.13	62.78	63.19
^a) Assignments based	d on HSQC an	d HMBC spec	tra. ^b) ^c) ^d) ^e) .	Assignments m	ay be intercha	nged.

Table 6. Selected ¹³C-NMR Chemical Shifts [ppm] of the $A^*[s]A^{(*)}$ Dimers **18–23** in CDCl₃

(br.), 2961*m*, 2867*w*, 1636*s*, 1593*m*, 1474*w*, 1442*w*, 1375*m*, 1330*m*, 1295*m*, 1257*m*, 1089*s*, 972*w*, 930*w*, 866*m*. ¹H-NMR (300 MHz, 15 mM, CDCl₃): see *Table* 5; additionally, 6.57 (br. *s*, NH₂); 6.11 (br. *s*, NH₂); 1.52 (*sept.*, *J* = 6.9, Me₂CH); 1.60, 1.59, 1.395, 1.375 (4*s*, 2 Me₂CO₂); 0.79 (*d*, *J* = 6.9, *Me*₂CH); 0.74, 0.73 (2*s*, Me₂CSi); -0.08, -0.09 (2*s*, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table* 6; additionally, 114.74, 113.62 (2*s*, 2 Me₂CO₂); 34.09 (*d*, Me₂CH); 27.22, 27.13, 25.48, 25.43 (2*q*, 2 *Me*₂CO₂); 25.22 (*s*, Me₂CSi); 20.32 (*q*, *Me*₂CSi); 18.49 (*q*, *Me*₂CH); -3.40 (*q*, *Me*₂Si). HR-MALDI-MS: 837.3516 (100, [*M* + Na]⁺, C₃₆H₅₄N₁₀NaO₈SSi⁺; calc. 837.3514), 815.3682 (39, [*M* + H]⁺, C₃₆H₅₅N₁₀O₈SSi⁺; calc. 815.3694). Anal. calc. for C₃₆H₅₄N₁₀O₈SSi (814.36): C 53.05, H 6.68, N 17.19; found: C 53.19, H 6.80, N 17.18.

2',3'-O-Isopropylideneadenosine-8-methyl-($8^1 \rightarrow 5'$ -S)-8-(hydroxymethyl)-2'3'-O-isopropylidene-5'thioadenosine (23). In a polyethylene flask, a soln. of 22 (60 mg, 0.07 mmol) and (HF)₃·Et₃N (120 µl, 0.75 mmol) in THF (1 ml) was stirred for 2 d at r.t., poured into brine, and extracted with AcOEt. The combined org. layers were washed with sat. NaHCO₃ soln. and brine, dried (MgSO₄), and evaporated. FC (CH₂Cl₂/MeOH/NH₄OH 100:0:0 \rightarrow 92:8:1) gave 23 (33 mg, 66%). Colourless powder. R_t (CH₂Cl₂/MeOH/NH₄OH 90:10:1) 0.14. M.p. 149.1–150.8°. UV (CHCl₃): 263 (24768). [a]₂₅²⁵ = -39.3 (c = 1.0, CHCl₃). IR (CHCl₃): 3481w, 3411w, 3332w (br.), 3265w, 3187w (br.), 2993m, 2841w, 1638s, 1600m, 1480w, 1448w, 1375m, 1332m, 1297m, 1157m, 1082s, 1008w, 968w, 909w, 864w. ¹H-NMR (500 MHz, 52 mM, CDCl₃; assignments based on DQFOSY, HSQC, and HMBC spectra): see *Table* 5; additionally, 6.80 (br. s, H₂N-C(6/II); 6.54 (br. s, H₂N-C(6/I)); 1.62, 1.35 (2s, Me₂C/II); 1.57, 1.37 (2s, Me₂C/I). ¹³C-NMR (125 MHz, CDCl₃, assignments based on a HSQC and a HMBC spectrum): see *Table* 6; additionally, 114.53 (s, Me₂C/I); 113.95 (s, Me₂C/II); 27.73, 25.38 (2q, Me₂C/II); 27.06, 25.36 (2q, Me₂C/I). HR-MALDI-MS: 695.2324 ([M + Na]⁺, C₃₈H₃₆N₁₀NaO₈S⁺; calc. 695.2336). Job's Plot for the Heteroduplexation of **11** and **20** (Fig. 7). 20-mM Solns. of **11** and **20** were mixed in varying proportions in such a way that the sum of the concentrations of **11** and **20** was 20 mM, and the chemical shifts of H-N(3/I) and H-N(3/II) were determined. For the calculation, we used the δ values of 7.70 ppm for H-N(3/I) and H-N(3/II) of **11**, 12.81 ppm for H-N(3/I) of **11** · **20**, and 12.90 ppm for H-N(3/II) of **11** · **20**. 6 : 4 to 9 : 1 Mixtures of **11** and **20** were considered as composed of a 1 : 1 mixture of **11/20** and excess **11**. For these mixtures, $\delta(H-N(3/I))$ and $\delta(H-N(3/II))$ of **11**, as taken from the curves in Fig. 6, were 9.8 and 10.4 ppm for 9 : 1 and 8 : 2 [c]₀ ratios, 9.5 and 10.2 ppm for the 7 : 3 [c]₀ ratio, and 9.2 and 9.8 ppm for the 6 : 4 [c]₀ ratio, respectively. ¹H-NMR (300 MHz, CDCl₃): 10.17 (H-N(3/I)) and 10.77 (H-N(3/II)) for 9 : 1 [c]₀ ratio of **11/20**; 10.37 and 10.88 for 8 : 2 [c]₀ ratio; 10.76 and 11.20 for 7 : 3 [c]₀ ratio; 11.18 and 11.54 for 5 : 5 [c]₀ ratio; 11.69 and 12.03 for 4 : 6 [c]₀ ratio; 11.87 and 12.22 for 3 : 7 [c]₀ ratio; 12.14 and 12.48 for 2 : 8 [c]₀ ratio.

Mole-Ratio Plots for the Heteroduplexation of 9/18, 10/19, 12/21, 13/22, and 14/23 (Fig. 8). In a NMR tube, 0.8 or 0.9 ml of a 6M soln. of 9, 2.8M soln. of 10, 6.3M soln. of 12, 6M soln. of 13, and 3.2M soln. of 14 were diluted repeatedly with aliquots of a soln. containing the $U^*[s]U^{(*)}$ dimer in the same concentration and the corresponding $A^*[s]A^{(*)}$ dimer in the tenfold concentration, respectively. The chemical shifts for H-N(3/I) and H-N(3/II) of the $U^*[s]U^{(*)}$ dimers were determined and plotted against the $U^*[s]U^{(*)}/A^*[s]A^{(*)}$ mole ratio.

REFERENCES

- [1] A. Ritter, D. Egli, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 673.
- [2] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861.
- [3] V. T. Ravikumar, A. H. Krotz, D. L. Cole, Tetrahedron Lett. 1995, 36, 6587.
- [4] M. C. Pirrung, S. W. Shuey, D. C. Lever, L. Fallon, Bioorg. Med. Chem. Lett. 1994, 4, 1345.
- [5] M. Kratochvíl, O. Engkvist, J. Šponer, P. Jungwirth, P. Hobza, J. Phys. Chem. A 1998, 102, 6921.
- [6] A. Dunger, H.-H. Limbach, K. Weisz, Chem.-Eur. J. 1998, 4, 621.
- [7] K. Weisz, J. Jähnchen, H.-H. Limbach, J. Am. Chem. Soc. 1997, 119, 6436.
- [8] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688.
- [9] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 864.
- [10] J. Šponer, P. Jurecka, P. Hobza, J. Am. Chem. Soc. 2004, 126, 10142.
- [11] H. Gunji, A. Vasella, Helv. Chim. Acta 2000, 83, 1331.
- [12] A. Dunger, H. H. Limbach, K. Weisz, J. Am. Chem. Soc. 2000, 122, 10109.
- [13] J. Sartorius, H. J. Schneider, Chem.-Eur. J. 1996, 2, 1446.
- [14] Y. Kyogoku, R. C. Lord, A. Rich, Proc. Natl. Acad. Sci. U.S.A. 1967, 57, 250; Y. Kyogoku, R. C. Lord, A. Rich, J. Am. Chem. Soc. 1967, 89, 496.
- [15] L. Katz, J. Mol. Biol. **1969**, 44, 279.
- [16] O. F. Schall, G. W. Gokel, J. Am. Chem. Soc. 1994, 116, 6089.

Received May 10, 2008